FLIGHT PLANNING IN INTEX-A

The DC-8 at MidAmerica airport

FROM MISSION DESIGN TO DAY-TO-DAY FLIGHT PLANNING

A priori information:

- past observations
- models

INTEX-A mission objectives

Observational resources

INTEX-A pre-mission flight plan

Get in the field; throw away the plans

day-to-day flight planning

Actual flight plan

HOW WAS DAY-TO-DAY FLIGHT PLANNING DONE?

MIND THE VISION: mission objectives, evolving priorities, flight menu

IDENTIFY OPPORTUNITIES:

- Near-real-time observations (aircraft, satellite)
- Synoptic meteorological forecasts
- Plans of other ICARTT aircraft

- DESIGN FLIGHT PLAN:

- Lagrangian trajectories
 - -Forward: track current events of interest
 - Backward: define areas of influence for proposed flight tracks
- Eulerian CTMs: convolve meteorological forecasts with source and chemical information; fly aircraft through model

- GENERAL FLIGHT PLAN CRITERIA:

- Satellite validation (Terra, Aqua, Envisat)
- Extensive vertical profiling
- Extensive geographical coverage

FLIGHT PLANNING TEAM AND PRODUCTS

- Fuelberg: weather forecasts, forward trajectories (boundary layer influence), back-trajectories (potential flight tracks)
- Thompson/Pickering/Pfister: forward trajectories, Lagrangian influence maps (ozonesondes, TOMS AI, ligthning, convection)
- McMillan: NRT AIRS CO + forward trajectories
- Richter: NRT SCIAMACHY NO₂, HCHO
- Chu: NRT MODIS AOD, NOAA GASP AOD, smoke product
- Edwards/Emmons: MOPITT CO + MOZART global CTM forecasts
- Carmichael: STEM regional CTM forecasts
- Pierce: RAQMS global CTM forecasts
- Jacob/Jaegle/Pawson: GEOS-4 global CTM forecasts
- Crawford: flight planning and satellite orbit software

INTEX flight#14 plan - Pease local 6 on 7/31

Objectives:

- 1. Low-level continental outflow
- 2. Chemical aging and recirculation around Bermuda High
- 3. Intercomparison with P-3
- 4. Triple-whammy satellite validation: Terra, Aqua, Envisat

Full vertical profiling along points 1-2-3-4; Spiral at point 2 (satellite validation); Low-altitude 1-15K legs along points 4-5; P-3 rendez-vous at point 5, intercomparison along points 5-6

NOAA GASP AOD and Fire and Smoke 7/29 at 22Z: Fires in Washington State

Fires in western Siberia

MOPITT CO Column for 20040725-20040729

AIRS CO mixing ratio on 7/27-29: Elevated CO transported over to the Atlantic Ocean, Asian plume reaching west coast

MOPITT CO for 20040728

Gridded at 0.5x0.5deg from MOP02F-20040728-L2V6.1.2.prov.hdf (apriori fraction < 50%)

Lightning Influence over 5 days maximum SE of New England Coast

GEOS-4 7/29 12Z forecasts for 7/31 18Z: low-altitude outflow, high-altitude recirculation

RAQMS 54hr fx valid 07/31 18Z

Tropospheric O₃ columns

Recirculated air in Bermuda High

MOZART-2 Forecast for 20040731/18Z, Cross Section 60W: low-altitude outflow at 45-50N

MODEL-GUIDED FLIGHT PLANNING, MODEL-ASSISTED DATA ANALYSIS

- Flights designed to test models targeted at INTEX-objectives models in broadest sense! statistical relationships, conceptual models, 0-D, 3-D
- 3-D models are versatile tools integrate them in data analysis. The modelers don't have to be in the driver's seat!
- Integration of multi-platform aircraft observations, satellite observations, and 3-D models offers a powerful approach for addressing INTEX-A objectives.